If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=32x+256=0
We move all terms to the left:
x^2-(32x+256)=0
We get rid of parentheses
x^2-32x-256=0
a = 1; b = -32; c = -256;
Δ = b2-4ac
Δ = -322-4·1·(-256)
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-32\sqrt{2}}{2*1}=\frac{32-32\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+32\sqrt{2}}{2*1}=\frac{32+32\sqrt{2}}{2} $
| .06x=12000 | | 12+5/8a=27 | | 5/4w=-3 | | 36+2x=-30 | | 48x=36x+144 | | 4x-1+2x-5=-36 | | -3x(1x+1)=1 | | -1.8w=40.14 | | b=–(16) | | 4m-9m=15 | | O-4o=3 | | b/4-15=12 | | 0-7o=18 | | 14-3t=-1 | | 9=-3+2u | | 10d+5d=0 | | 8g-g=0 | | 15.9=x-1.1 | | 15.9=x-1.1 | | 11-4t=5t | | –9(–3+2d)= | | 4x+1=16-3x | | x-16.1=5.2 | | (9x+5)+(8x+2)=126 | | 13.6=x-14.1 | | x-19.8=14.6 | | 2y-47=54 | | 5n-17=29 | | 5/x-1=x-5/27 | | 9x2-3x=180 | | 4x^2-8=-24 | | 2x-1(3x+4)=6 |